Improving a language technological application by consulting syntactic information

Daphne Theijssen

Department of Linguistics Radboud University Nijmegen daphnetheijssen@student.ru.nl

Overview

- Introduction to (why-)Question Answering
 - Question Answering (QA)
 - A system for why-QA
- Exploiting syntax in question analysis
 - Question analysis
 - Research questions
 - Syntactic parsing: TOSCA (Oostdijk, 1996)
 - Data and method
 - Results
 - Answers to research questions
- Conclusion

Question Answering (1)

Question Answering (2)

Question Answering (3)

Example of why-QA (1)

Example of why-QA (2)

Example of why-QA (3)

A system for why-QA

Question analysis (1)

- Importance of answer type determination for quality of QA system (Hovy et al., 2001)
- Answer type for why-questions: 'reason'
 - 'cause'
 - 'motivation'
 - 'circumstance'
 - 'purpose'

Question analysis (2)

- Apply machine learning algorithms
- Some of the features used:
 - Subject agency
 - Verb type
 - Modality
 - Presence of intensive complementation
 - Presence of monotransitive "have"

Research questions

- 1. Does the use of syntactic information improve the question analysis module in the why-QA system?
- 2. How do inaccuracies in syntactic trees affect the performance of the question analysis module?

Question analysis and syntax: example (1)

- "After three Sagos were stolen from his home in Garden Grove, "I put a big iron stake in the ground and tied the tree to the stake with a chain," he says proudly."
- "Why did Harold Smith chain his Sagos to iron stakes?"

Question analysis and syntax: example (2)

Why Adverb

did Auxiliary

Harold Noun

Smith Noun

chain Verb

his Pronoun

Sagos Noun

to Infinitive-marker

iron Verb

stakes Noun

 Why did Harold Smith ask his Mary to iron sheets?

Syntactic parsing: TOSCA

- Deep syntactic parser
 - Categories
 - Functions
 - Attributes

Intermezzo: example

```
NOFU, TXTU()
•UTT,S(indic,inter,intr,pass,pres,unm)
··A, AVP (inter)
· · · AVHD, ADV (inter) Why
··INTOP, AUX(indic, pass, pres) { are }
                                                             category
· SU. NP()
···NPHD, N(com, plu) films
..v, VP(indic,intr,pass)
                                                             function
···MVB, LV(indic motr pastp) {planned}
· · A, PP()
···P, PREP() {for}
                                                             attribute
· · · PC , NP ( )
····NPHD, N(com, sing) {release}
····NPPO, AVP (gen)
····AVPR, AVP(excl)
                                         Why are films planned for
·····AVHD, ADV(excl) {only}
                                         release only overseas?
····AVHD, ADV(gen) {overseas}
•PUNC, PM(inter, qm) ?}
```


Intermezzo: example

Syntactic parsing: TOSCA

- Deep syntactic parser
 - Categories
 - Functions
 - Attributes
- Needs human interference at two stages:
 - After tagging → checking tags
 - After parsing → selecting desired tree
- Interactive character problematic in why-QA application

Data and method (1)

- Focus on distinguishing 'motivation' and 'cause' (most common)
- 235 questions formulated to 13 different newspaper texts by native speakers
- Three different data sets of questions:

coverage

1. (Gold	standard	trees	100%
------	------	----------	-------	------

- 2. Semi-automatic output 98%
- 3. Fully automatic output 80%

Data and method (2)

- Manually determine (for each question):
 - Perfect features
 - Answer type
- Automatically derive features using lexical resources and syntactic trees
- For questions that could not be parsed the part-of-speech tags were consulted
- Baseline: use words in questions as features (80.4%)

Data and method (3)

1. Three types of feature sets:

- Words only (baseline)
- Syntactic information only
- Both words and syntactic information

2. Four types of sources for the features:

- Manually derived perfect features (ceiling)
- Gold standard syntactic parses
- Semi-automatic syntactic parses
- Fully automatic syntactic parses
- All offered to Timble

Results (1)

• Baseline: 80.4% (selection of words)

Accuracy using Timble:

	perfect features	gold standard	semi- automatic	fully automatic
syntax	83.8	77.4	77.9	66.4
selection words + syntax	88.9	86.8	86.8	82.1

• Ceiling: 88.9% (perfect features)

Results (2)

Answers to research questions

- 1. Syntactic information is useful for question analysis in why-QA:
 - Presented method (words + syntactic information): 86.8% of 235 questions can be correctly classified as 'motivation' or 'cause', compared to 80.4% with words only
- 2. Too many inaccuracies decreases the benefit of using syntax considerably:
 - Automatically derived TOSCA lead to a decrease in accuracy (82.1%)

Conclusion and further research

- There is a need for a question answering system for why-questions
- In question analysis, the use of syntactic information is beneficial as long as it is not too erroneous
- New research: automatic extraction of discourse relations from texts for the purpose of answer extraction

Questions?

